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SUMMARY

Two-level domain decomposition methods are developed for a simple nonconforming

approximation of second order elliptic problems. A bound is established for the condition number

of these iterative methods, which grows only logarithmically with the number of degrees of freedom

in each subregion. This bound holds for two and three dimensions and is independent of jumps in
the value of the coefficients.

INTRODUCTION

The purpose of this paper is to develop domain decomposition methods for second order elliptic

partial differential equations approximated by a simple nonconforming finite element method, the

nonconforming P1 elements. We consider a variant of a two-level additive Schwarz method

introduced in 1987 by Dryja and Widlund [1] for a conforming case. In these methods, a

preconditioner is constructed from the restriction of the given elliptic problem to overlapping

subregions into which the given region has been decomposed. In addition, in order to enhance the

convergence rate, the preconditioner includes a coarse mesh component of relatively modest

dimension. The construction of this component is the most interesting part of the work. Here we

have been able to draw on earlier multilevel studies, cf. Brenner [2], Oswald [3], as well as on recent

work by Dryja, Smith, and Widlund [4]. Our main result shows that the condition number of our

iterative methods is bounded by C (1 + log(H/h), where H and h are the mesh sizes of the global

and local problems, respectively. We also note that this bound is independent of the variations of

the coefficients across the subregion interfaces.

The face based and the Neumann-Neumann coarse spaces, that we are introducing, have the

following characteristics. The nodal values are constant on each edge (or face) of the subregions

and the values at the other nodes are given by a simple but nonstandard interpolation formula,

Thus the value at any node in the interior of a subregion is a convex combination of three (or four)

values given on the boundary, in case of triangular (or tetrahedrai) substructures. We note that an
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important difference between nonconforming and the conforming case is that there are no nodes at

the vertices (or wire basket) of the subregions.

We note that ideas similar to ours have been used recently in other studies of domain

decomposition methods for nonconforming elements; cf. Cowsar [5,6] and Cowsar, Mandel and

Wheeler [7]. In particular, an isomorphism similar to ours was independently introduced by

Cowsar. We point out that by using these isomorphisms, we can analyze any nonconforming

version of domain decomposition methods which have already been analyzed for conforming cases.

In this paper, we focus on the case where there are great variations in the coefficients across

subdomains boundaries for both two and three dimensions. We define and analyze new coarse

spaces and obtain condition numbers with just one log factor.

A short version of this paper was entered into Copper Mountain student competition in

mid-December 1992. The present paper is a slight modification of a technical report [8].

DIFFERENTIAL AND FINITE ELEMENT MODEL PROBLEMS

To simplify the presentation, we assume that _ is an open, bounded, polygonal region of

diameter 1 in the plane, with boundary 0_2. In a separate section, we extend all our results to the

three dimensional case.

We introduce a partition of fl as follows. In a first step, we divide the region fl into

nonoverlapping triangular substructures fli, i = 1,..., N. Adopting common assumptions in finite

element theory, cf. Ciarlet [9], all substructures are assumed to be shape regular, quasi uniform and to

have no dead points;i.e, each interior edge is the intersection of the boundaries of two triangular

regions. We can show that the theory also holds if we choose nontriangular substructures, where

the boundary of each substructure is a composition of several curved edges, and each curved edge is

the intersection of two substructures. Naturally, we need assumptions related to the quasi

uniformity and nondegeneracy of this partition. Initially, we restrict our exposition to the case of

triangular substructures since the main ideas are seen in this case. This partition induces a coarse

mesh and we introduce a mesh parameter H := max(H1,..., HN} where Hi is the diameter of _2i.

We denote this triangulation by _H. Later, we extend the results to nontriangular substructures.

In a second step, we obtain the elements by subdividing the substructures into triangles in such

a way that they are shape regular, and quasi uniform. We define a mesh parameter h as the

diameter of the smallest element and denote this triangulation by T h. Similarly, we assume the

triangulation ,/-h does not have any dead points.

We study the following selfadjoint second order elliptic problem:

Find u • H_(_), such that

v)= f(v), v • (I)
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where

fo w. Vv andS(v)= forf La(u, v)

We assume that a(x) > a > 0 and that it is a piecewise constant function with jumps occurring

only across the substructure boundaries. This includes eases where there is a great variation in the

value of the coefficient a(x). We remark that there is no difficulty in extending the analysis and the

results to the case where a(x) does not vary greatly inside each substructure.

Definition 1 The nonconforming P1 element .spaces (el. Crouzeix and Raviart [10]) on the h-mesh

and H-mesh is given by

V h := {vlv linear in each triangle T E T h,

v continuous at the midpoints of the edges of T h, and

v = 0 at the midpoints of edges of'T h that belong to Ofl},

and

V H := {v[ v linear in each triangle T E 7 "H,

v continuous at the midpoints of the edges of_/'H, and

v = 0 at the midpoints of edges of 7 "rt that belong to Of_}.

These spaces are nonconforming; in fact Vt¢ ¢. V h and V h ¢_ H](f_).

Let E be a region contained in f_ such that cgE does not cut through any element. Denote by Vih_.

and :Thl_ the space V h and the triangulation _[h restricted to E, respectively.

Given u E V, hI_' we define the discrete weighted energy semi norm by:

lul_,h(m):= a_(u,u), (2)

where

a_(_,v) = _C fT a(x) W. W dx.
TE Thl_

In a similar fashion, we define the inner product a_(u, v) and the semi norm lUlg2,n(n) for

u, v E vH(fl). In order not to use an unnecessary notation, we drop the subscript f_ when the

integration is over f_ and the subscript a when a = 1.

(3)

The discreteproblem associatedwith (I) isgiven by:

Find u E V h, such that

ah(_,v) = f(v), v _ e vh(_). (4)

Note that I" IH_.h(n) is a norm, because if lulH2.h(n ) = 0, then u is constant in each element. By

the continuity at the midpoints of the edges and the zero boundary conditions, we obtain u = 0.

Note also that f is a continuous linear form. Therefore, we can apply the Lax-Milgram theorem

and find that there exists one and only one solution of the discrete equation (4).

We also define the weighted L 2 norm by:

fE 2Ilull_(E):- _(x) lu(_)l_ dx for u E (V h + V H + L_)I_. (5)
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We introduce the following notation: x _ y, f _ g and u × v meaning

x <_ Cy, f > cg and cv < u < Cv, respectively.

Here C and c are positive constants independent of the variables appearing in the inequalities and

the parameters related to meshes, spaces and, especially, the weight a(x).

Figure 1.

Sometimes it is more convenient to evaluate a norm of a finite element function in terms of the

values of this function at the nodal points. By first working on a reference element and then using

the assumption that the elements are shape regular, we obtain the following lemma:

Lemma 1 For u 6 V, h

and

[[U[[LIh(Z) × h 2 _ a(T) (u2(M1) +u2(M2) + u2(Ma))
T6 Thl_

a(T) {(u(M1) - u(M2)) 2
T6 q=hl_

- + -

where M1, M2, Ms are the midpoints of the edges of the triangle T as in Figure 1.

(6)

(7)

An inverse inequality can be obtained by using only local properties. It is easy to see that for

u6 V h,

lUIH:, h _-- h-lllUllL_. (s)

ADDITIVE SCHWARZ SCHEMES

We now describe the special additive Schwarz method introduced by Dryja and Widlund; see

e.g. [11,12]. In this method, we cover _ by overlapping subregions obtained by extending each

substructure _i to a larger region _. We assume that the overlap is 6_, where ti_ is the distance

between the boundaries 0_i and 012_, and we denote by 6 the minimum of the _ii. We also assume
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that Ofl_ does not cut through any element. We make the same construction for the substructures

that meet the boundary except that we cut off the part of fl_ that is outside of f2.

For each f_, a P1 nonconforming finite element subdivision is inherited from the h-mesh

subdivision of ft. The corresponding finite element space is defined by

Vih := {v Iv • V h, support of v C f_'i}, i = 1,.--, N.

The coarse space V0h C vh(f_) is given as the range of I h (or _h) where the prolongation

operator Ih (or/_h) will be defined later.

(9)

Our finite element space is represented as a sum of N + 1 subspaces

v: + +...+
We introduce operators Pi : V h _ V_ , i = 0,..., N, by

ah(Piw, v) = ah(w, v), V v • Vi h,

and the operator P: V h ---, V h, by

P = Po + PI + " " + PN.

In matrix notation, P0 is given by

Po = Ih( Ih T K Ih )-1ih T K

where K is the global stiffness matrix associated with ah(', ").

(10)

(11)

(12)

(13)

We replace the problem (4) by

N

Pu = g, g = _-_gi where gi = P_u. (14)
i=O

By construction, (4) and (14) have the same solution. We point out that gi can be computed,

without knowledge of u, since we can find gi by solving

ah(gi, v) =ah(u,v) = f(V), Vv • V_h . (15)

The operator P is positive definite and symmetric with respect to ah( ., .). We can therefore solve

(14) by a conjugate gradient method. In order to estimate the rate of convergence, we need to

obtain upper and lower bounds for the spectrum of P. A lower bound is obtained by using the

following lemma: cf. Zhang [13,14].

Lemma 2 Let Pi be the operators defined in equation (11) and let P be given by (12).

ah(p-lv, v) = min _ah(vi, vi), vi • Vi h.
v= E _g/

Therefore, if a representation v = E vi can be found such that

N

52ah(v,,v,)< c0 ah(v, Vv• v
i=O

then

Amin(P) >__Co 2.

Then

(16)

(17)
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An upper bound on the spectrum is obtained by bounding

ah(pv, V) = ah(Pov, v) + ah(PlV, v) +... + ah(PNV, V) (18)

from above in terms of ah(v, V). Using Schwarz's inequality, the fact that the Pi are projections,

and that the maximum number of regions that intersect at any point is uniformly bounded, it is

easy to show that the spectrum of P is bounded above by

:p e + 1}.

PROPERTIES OF THE P1 NONCONFORMING FINITE ELEMENT SPACE

We first define two local equivalence maps in order to obtain some inequalities and local

properties for our nonconforming space. Through these mappings, we can extend some results that

are known for the piecewise linear conforming elements to our nonconforming case.

We use a bar to denote conforming spaces. Let I7_ If_ be the conforming space of piecewise linear

functions in fl_, where the h/2-mesh is obtained by joining midpoints of the edges of elements of

Thl ,.

We define the local equivalence map .h4_ : vh[fl_ --* l_l_,, as follows:

Isomorphism 1 Given u E vhlfi_, define _ = .Miu by the values oft at the three sets of points (cf.

Figure 2.):

i) If P is a midpoint of an edge of a triangle in T h, then

fi(P) := u(P).

ii) If P is a vertex of an element in T h and belongs to the interior of _i, and the Tj are

the elements that have P as a vertex, then

rz(P) :- mean, of UlT_(P ).

Here u]Tj(P), is the limit value of u(x) when x • Tj approaches P.

iii) If Q is a vertex of Thloa,, and Ql and Qr the two midpoints of Thlon_ that are next

neighbors of Q, then

IQ,QI ,.., IQ QIu(Q )
 (QI := ITQ I t ,J + I ,Q I , ..

Here IQ_Q] is the length of the segment Q_Q.

Case ii) is illustrated in Figure 2., where

1 6

_(P) = -_ _-:_UIT,(P).
i=l
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Caseiii) is required in order to have property (21), which will be very important in our analysis.

Lemma 3

V

Figure 2.

Given u E vh[fl_, let _ E V_I¢I_ given by fi = A4iu. Then

I_l-_(n;)× lul._,_¢n,),

II'allL_cna× IlullL_'(n,),

(19)

(20)

IQ_QIlu(Q_) - u(Q_)l2.
It(Q) - _(Q_)I2 - IQ_Q_I

The right hand side can be controlled by the energy semi norm of u restricted to the union of the

triangles TT, Ts and Tg.

We also prove that if we take next two neighboring vertices of T _ in the interior of g/j, the

energy semi norm can be bounded locally. If a(x) does not vary a great deal, we can work with

weighted semi norms. Using the fact that our arguments are local, it is easy to obtain the upper

bound of (19).

The lower bound is easy to obtain since the degrees of freedom of V h are contained in those of
-- h

Similar arguments can also be used to obtain (20).

Finally, it is easy to see that (21) follows directly from iii) even if the refinement is not

uniform. D
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For instance (see Figure 2.),

and

Here ] • [H_(n_) is the standard weighted energy semi norm/or conforming/unctions.

Proof. We first note that we have results similar to (6) and (7) for the conforming space V_ I¢i_,

where now/1//1, M2 and M3 are the vertices of a triangle in T_. In order to prove (19), we compare

(7) with the analogous formula for the piecewise linear conforming space.



We defineanother local equivalence map .h4_E : vhifi_ ---+V_I_,, by:

Isomorphism 2 Given u E vhlfi_ and an edge E of O_i, define _ = .MEn by the values of _ at the

three sets of points (cf. Figure 2.):

i) Same as step i) of Isomorphism 1.

ii) Same as step ii) of Isomorphism 1.

iii) If V is a vertex Thion, and an end point orE, and V_ the midpoint of ThlE that is

the next neighbor of V, then

:=

iv) If Q is a vertex of Thlon_ and we are not in case iii), then

IQiQI IQ,'Q[

Using the same ideas as in Lemma 3, we can prove:

--h

Lemma 4 Given u E Vhl_, let _ E V_-ih, given by _ = .MEn. Then

×

and

(22)

(23)

fE fi(S) ds = fE u(s) ds. (24)

THE INTERPOLATION OPERATOR

Let v E V h and let Pii be the midpoint of the edge Ei_ common to _ and _.

Definition 2 The Interpolation operator I H : V h ---* V H, i8 given by:

1 1

The second equality follows from the fact that the mean of v on each edge of an element of T h is

equal to v(M1), where M1 is the midpoint of the edge. It is important to note that the value of

(I_v)(Pij) depends .only on the values of v on the interface E_j. This allows us to obtain stability

properties that are independent of the differences of a(x) across the substructure interfaces.

Before studying the stability properties of this operator, we need two lemmas for the piecewise

linear conforming finite element space.

The following lemma is a Poincar4-Friedrichs inequality. The idea of the proof can be found in

Ciarlet (Theorem 6.1) [9] and in NeSas (Chapter 2.7.2) [15].
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Lemma 5 Let F be a subset of Ol2i, such that F and O_l_ have measures of order H. Then,

+ (Jfr fi(x)dx) 2, Vfi e Hi(a,). (26)H2[_121(n,)

As a consequence, if fr fi(x) dx = O, we have the Poincard inequality

II llL (n,) H (27)

The next lemma isa Poincar_-Friedrichsinequalityfor nonconforming PI elements. It isobtained

by using Lemmas 3, 4 and 5.

Lemma 6 Let u E Hl,h(_i), where 12i is a triangular substructure of diameterO(H). Let F be 0_

(or an edge of 0_). Then,

Ilull  (a,)-- H lUlH,_(a_)+(u(x)dx) 2, Vu • H1(fl, ). (28)

As a consequence, if fr u(x) dx - O, we have the Poincard inequality

IlUllL_,h(n,) -< H lUlH_.,(n,). (29)

L_- andThe next lemma gives an example of an operator that is 2 H_-stable.

Lemma 7 Let fi • H_ (12i), where _ is a triangular substructure of diameter of O(H). Define a

linear function fiH in fl_ by

1 /E fi(x) dx, j = 1,2,3, (30)

where the Eij are the edges of 12i, and P_j is the midpoint of Eij. Then,

1 5 -5I g(P,j)l ---- ll llL-cn,) + I lglcn,), (31)

I._HIH:(n, ) _ I,_lH:Cn,), (32)

and

Proof. Consider initially a region fl with a diameter of 1. Using that [Eijl = 0(1), the

Cauchy-Schwarz inequality and a trace theorem, we have

]fiH(Pij)[ 2 _'1 _(x) dxl 2 -.< []fi]l_2(E,j )
ij

-2

We obtain (31) by returning to a region of diameter H.

(33)
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Note that for any constant c

I_ 12 v
H H_(n;) ""

[UH(P_I) -- UH(P_2)[ 2 -'[- ['UH(P/2) -- _H(Pi3)[ 2 "4- lUll(P/3) -- '_H(P,1)[ 2

By choosing c = fi(Pil) and r =Eil, we can apply Lemma 5 and obtain the HI-stability (32).

We now prove the L2-stability. Since _ - _H has mean zero on 0f_, we can apply the Poincar_

inequality (27) and obtain

[]_ -- fiH[[L2(fl,) ----.H [fi - UH[HI(fl,).

Using the first part of this lemma, we obtain the L2-stability (33). D

The next lemma shows that the interpolation operator I H, defined by (25), is locally L 2- and

H_ -stable.

Lemma 8 Let u e V h(f2).

and

Then UH = I_U satisfies the following properties

[UH[HI,it(I'll ) "< [U[HI (fli) ,

(34)

(36)

[[UH -- UI[L_(Q,) -'< H[u[g_,h(n,) , i= 1,...,N. (37)

Proof. Let UH = IHu and let fi E Hl(_i) be given by fi -- .ME"u and let fig(P_l) be given by

(30). Using the properties (24) and (25), we have

uH(Pil) = fill(P,1). (38)

Therefore, by (38), (31) and Lemma 4, we have

1 2
[uH(P.)[ 2 = [_H(P,1)I2 _ _-_[[_[IL_(n,)+ [_[_,(n,) (39)

1 2
__-g_IIuI[L_(n,)+ [UI_l(n,).

We also obtain the same estimate for ]uH(Pi2)[ and [uH(Pis)[.

The rest of the proof is similar to that of Lemma 7. We now use the Poincar_ inequality for

nonconforming elements. [:]

THE PROLONGATION OPERATOR

In this section, we introduce several prolongation operators and establish that they are stable.

The range of each of these operators will serve as a coarse space in our algorithms.
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Definition 3 The Prolongation Operator I h : V H --* V h, is given by:

i) For all nodal points P of T h that belongs to an edge Eij common to _2i and f2j, let

(IhuH)(P) := ug(Pij), where Pij is the midpoint of the edge Eij.

ii) Given IhuH at the nodal points of P = t.JiO_, from, i), let IhuH(f_) be the

Pl-nonconforming harmonic extension inside each f_i.

It is easy to check that Uh = I_utt E vh(fl). A disadvantage of step ii) is that we have to solve

exactly a local Dirichlet problem for each substructure in order to obtain the harmonic extension.

Other extensions can be used, which we call approximate harmonic e.vtensions. They are given by

simple explicit formulas and have the same L_ and Ilia, h stability properties as the harmonic one.

P3
Figure 3.

Our first construction is a natural generalization of the partition of unity introduced by Dryja

and Widlund in [11]; this partition of unity will provide the basis functions of our approximate

extensions. Let Pj, j -- 1, 2, 3, be the midpoints of the edges of 12i, and let Vj be the vertex of f_i

that is opposite to Pj. Let C be the barycenter of the triangle f_, i.e. the intersection of the line

segment connecting Vj to Pj.

Extension 1 The construction of an approximate harmonic extension is defined by the following

steps (see Figure 3.):

i) Let
1

a(C) := 5 {uH(P') + uH(P_) + u"(P")}"

ii) For a point R that belongs to a line segment that connects C to a vertex Vj, let

:= a(C).

iii) For a point Q that belongs to a line segment connecting C to Pj, define ft(Q) by

linear interpolation between the values _(C) and uH(Pj), i.e by

:= + (1-

Here )_( Q ) =distance(Q, P_ ) / distance(C, P_) .

553



iv) For a point S that belongs to the line segment connecting the previous point Q to a
vertex Vk, with k _ j, let

:=

v) Finally, let IhI_IUH = IhU, where Ih is the interpolation operator into the space V h that

preserves the values of a function at the midpoints of the edges of the elements.

Note that the function fi just constructed is continuous except at the vertices Vj of i'_. The step

i) can be viewed as emulating the mean value theorem for harmonic functions. However, near the

vertices, fi is a bad approximation of the harmonic extension. We know that the local behavior of

the harmonic extension near a vertex V_ depends primarily on the boundary values in the vicinity

of Vj. For instance, if UH(P1) = O, uH(P3) ---- 0, and UH(P2) ---- 1, we should obtain Uh _-- 0 near V2; in

addition, by using symmetry arguments, we should have Uh _-- 1/2 for points near V1 that lie on the

bisector that passes through V1 . With this in mind, we now construct an alternative approximate
harmonic extension.

We change notation in order to be able to use Figure 3. Now let C be the point where the three
bisectors intersect.

Extension 2 The construction of the approximate harmonic extension is defined by (see Figure

s.):

i) Same as Step i) of Extension 1.

1
ii) Define _(Vj) = _ Et#j fi(Pt). For a point R that belongs to a line segment connecting

C to Vj, define _(R) by linear interpolation between the values fi(C) and _(Vj).

iii) Same as Step iii) of Extension 1.

iv) For a point S that belongs to a line segment connecting the previous point Q to

Vk, k _ j, fi(S) is defined by linear interpolation between the values fi(Q) at Q and

f(Q,j, k) at Vk. Here,

f(Q,j,k) = A(Q)fi(Vk) + (1 - A(Q))_(P_).

v) Same as Step v) of Extension 1.

A disadvantage of this extension is that we cannot just work in a reference triangle, since the

angles axe not preserved under a linear transformation. This is similar to the fact that under a

linear transformation a harmonic function does not necessarily remain harmonic. We can construct

other approximate harmonic extensions which combine the properties of the two extensions, given

so far, and working, for instance, with the barycenter C as in Extension 2 and replacing the weight

1/2 in Step ii).

The next lemma shows that the extensions given above have quasi-optimal energy stability.

Using ideas of Dryja and Widlund[ll], we prove the following lemma.

554



Lemma 9 Let UH 6 vH(_). Then

I/_UHIH:,.<n,)--_(1+ log(n/h)/l_eln_.<n,) (40)

and

IIIhuH - UHI]L_(ni)--<-- H[UHIHI,(n,)" (41)

Proof. Let 8_ 6 Vh]n_,j = 1, 2, 3, be the approximate harmonic extensions constructed from the

boundary values _ = 1 at the h-mesh nodes on the edge Eij, and 0_ = 0 at the other boundary

nodes of c9fli. It easy to see that the _ form a basis of all approximate harmonic extensions that

take constant values on the edges of the substructure. It is easy to show that if a point x belongs to

the interior of an element of i2,, then IV _Ph(X)l is bounded by C/r, where r is the minimum distance

from x to any vertex of g/i. Note that any element that touches a vertex of fli provides an order one

contribution to the energy semi norm. To estimate the contribution to the energy semi norm from

the rest of the substructure, we introduce polar coordinate systems centered at the vertices of fli.

Then,

I_hln_(n,) ----<_1 + r-2rdrd_o__l+log(H/h). (42)

Since the partition of unity 0_ forms a basis, it is easy to see that

[I_UH 2 _ (43)IH_,(fl,) "4

(1 + log(H/h)) {lug(P1)[ 2 + [uH(P2)[ 2 + lug(P3)[ 2}

and using ideas similar to that of Lemma 7, we have

h 2
[IHUHIHi(n,) "< (1 + log(H/h)) {lull(P1) -- uH(P2)I2+

lu.(p2) - _,.(p_)l2+ lu.(p_) - u.(pl)l 2}

x (1 + Iog(H/h))[UHI2H_(n,).

By construction, it is easy to see that

[(I_UH)(X)I < max luH(Pi)l.
--/=1,2,3

Therefore

iiihug _ 2 H 2u,,I L-_(n,)--_Z I_H(P')I2'
i

and by using (39) and (29), we obtain (41).

Since a(x) varies little in each _, these arguments are also valid for the weighted norms and we

obtain (40). [3
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Using Lemmas 6 and 9 and the triangular inequality, we have:

Theorem 1 Let u E Vh(_). Then

and

h H log(H/h))_ 1[I Ih uln2,.(n,)-- (1 + ]UlHJ,h(n_ ).

(44)

(45)

Remark 1 It is easy to see that we do not need to use the fact that UH E VH(_" we only need to

calculate values VH(P_j) by formula (25) at the midpoint Pij of the edge E_j. The next step is to

provide the constant value VH(Pij) to all nodes of the interface and perform, an appro_mate
harmonic extension.

Remark 2 The extensions also can be constructed for nontrianguIar substructures. In a first step,

we construct a partition of unity in _. This can be done by using ideas similar to those of the

triangular case. By using the same technique as in the proof of Lernma 9, we can show that

h 2

]I_UH[H2,.(n,) -'< (46)

(1 -I-log(H/h)) y_ a(f2i)]u.(Pij)- U,H(P/(j_l))l 2

j=l ::: :: ::::: :

where P_j and P_(j-1) are neighboring midpoints of edges of O_i and N_ is the number of edges of
2

OFh. We obtain ($_) by noting that each term of the sum is bounded by ]U]gj.h(a_ ).

THE NEUMANN-NEUMANN BASIS

In this section, we consider a Neumann-Neumann coarse space. This is the P1 nonconforming

version of a coarse space studied in Dryja and Widlund [16], and Mandel and Brezina [17].

However, here we use an approximate harmonic extension inside the substructures. We note that

the coarse spaces considered by these authors differ only in how certain weights are chosen. Mandel

and Brezina use weights that are convex combinations of the coefficient a(x), while Dryja and

Widlund use a½(x). Here we show that any convex combination of a_(x), for _ > 1/2, leads to

stability. We point out that the choice f_ = 1/2 can be viewed as a LLaverage, while f_ = 1 is an

average in the L _ sense.

We call the coarse space of the previous section, face based. There are some differences between

Neumann-Neumann and face based coarse spaces. A Neumann-Neumann coarse space has one

degree of freedom per substructure, while a face based uses one degree of freedom per edge. A

Neumann-Neumann basis function associated with the substructure _, has support in _ and its

neighboring substructures, while a face based function basis, associated with an edge of a
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substructure, has support in just two substructures. The face based coarse space appears to be

more stable since all the estimates, related to the jumps of the coefficients, are tight. In the lemmas

that we have proved for the face based methods, all the stability results were derived in individual

substructures, while in the Neumann-Neumann case, we need to work in' an extended subdomain.

Figure 4.

Definition 4 The Neumann-Neumann interpolation operator, INN : V h ---* V h, as follows:

i) For each substructure f_i, calculate the mean value on Ofli, i.e.

1 /On u(s) ds.

Here [Of_il is the length size of Of_i.

ii) For all nodal points P of T h that belong to the edge Ei,j, let

(*NNu) (P) = (-ThHu)(P,j), where

:= + + + mj .

Here Pit is the midpoint of the edge Eij.

iii) Perform an approximate harmonic extension to define INNu inside the substructures.

Note that we can also calculate miu by:

= _ IE, jl (I_u)(P,j). (47)
m_u j 10f_,l

Therefore, there exists a linear transformation IHn: V_r _ VH, such that i_u = Ig Inhu. The next

lemma establishes stability properties for I H.
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Lemma 10 Let UH E vH(12) and 1_ >_ 1/2. Then

H
[IHUHIH_.H(fl, ) < C(J_) ]UHIH_,H(a¢,) ,

and

(48)

lll_ug-uHllL_<n,)<C(/_)HUH H' ,n_-,,• (49)
t,H x i t

Here the extended domain ___f)eztis the union of f}i and the substructures that share an edge with. _i.

Proof. Let us firs.t prove the L_ stability. Note that (see Figure 4.)

aB(ni) m, + aB(nj) m_.
lu.(P,j) - (/_u.)(P,_)l 2= I_-(P,_) aB(n,) + aB(n_)

By using (47) and simple calculations, this quantity is equal to

1

laB(n,) + aB(n.)f2

.IE.,I,_, ' IE"l'u:R '

aB(n,) {_(uH(P,,) -- uH(Pjs)) +_I(UH(Pij) -- UH(P3,))}.2.

Using the shape regularity of the subdomains, it is easy to see that

a(f_,) [uH(P,_) --(IHuH)(P,i)] 2 "<

a2B(hi) 2 a(hi) a2B-1 (nJ) 2

laB(fl,) + aB(n_)l2 [UH[HJ,n(fl,) + laB(n,) + aB(n¢)l2 ]UH[H't,." (flj)

and using the fact that fl > 1/2, we can bound this quantity by

< c(_) 2lUHlHi.(n,un_)"

We obtain (49) by adding all the contributions (50) to the L_(n_) norm.

We prove (48) by using the triangular inequality, an inverse inequality, and (49).

Theorem 2 Let u 6 vh(12) and fl > 1/2. Then

HINNU -- ZL]]L_,(fl,) < C(fl) H ]u]Hj.,,(N_.,) ,

[INNU[H_.h(n_) < C(/_)(1+ Iog(H/h)/ l ]Ho.,,(n,)_._ 1 _xt .

(50)

D

(51)

(52)

and
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Proof. Using Lemmas 9, 10 and 8, we have

IINNUlm.._(n,)_--(1+ log(H/h))-'-'II_I_ul._ .(n_)<_

C(_) (1 + log(HIh))9 II_ulH,,,,cn:_,)---

C(3) (1 + log(H/h))_ [uln,l.hCnV, ).

The L_-stability is obtained by

IIINNU-- ulIL_,(n,)<--IIINNU-- I_Iff ulIL_(n,)+

IlZgZffU- Iff ulILz(n,)+ IlIffu - ulIL:-,Cn,),

and by using Lemmas 9, 10 and 8. D

Remark 3 We can also prove Theorem 2 for the case of nontrian.qular substT_Letures; of. Reromks

1 and 2.

THE THREE DIMENSIONAL CASE

We show in this section that the methods developed before can be extended to three dimensions.

For simplicity, we assume that 12 is a polyhedral region of diameter 1 in three dimensional space.

As before, we introduce a nonoverlapping partition composed of tetrahedra f_i of diameter of order

H. This defines a coarse space and a triangulation 7 "n. We further subdivide the substructures into

tetrahedra which results in a triangulation _Vh and define the nonconforming/91 finite element

spaces V h and V H as in Definition 1. Here, the continuity is enforced at the barycenter of the faces

of the triangulations.

The local equivalence maps are given by the following procedure. In each tetrahedral element of

T h (cf. Figure 5.), we connect its centroid to the four vertices and to the barycenters of the four

faces. We also connect each barycenter to the three vertices. In other words, we subdivide each

tetrahedral element into twelve subtetrahedra. We denote this new triangulation by T h. The

vertices of T h are the vertices, barycenters, and centroids of the elements of T h.

Let vhl_ i be the conforming space of piecewise linear functions of the triangulation Th[o,.

We define the local equivalence map .Mi : vhlfi_ _ VhlrI_, as follows:

Isomorphism 3 Given u E vhlfi,, define _ = Miu by the values of fz at the fifllo'wing sets of

points:
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i) If P is a vertex of an element of T £ and belongs to the interior of f_i, and the Kj are

the elements in Th[fi, that have P as a vertex, then

fi(P) := mean of UlK_(P).

Here U]K_(P) is the limit value of u(x) when x e Kj approaches P.

ii) If P is a barycenter of a triangle in Thlon,, then

fi(P) := u(P).

iii) If P is a vertex of a triangle in Th]onl and T_, j = 1,..-, Np, are the tTiangles of
ThIofl, that have P as a vertex, then

IT l
a(P):= u(C,).

Here Ci and IT_[ are the baryeenter and the area of the triangle Ti, respectively.

It is easy to check that the Lemma 3 holds, if we replace _h12[_, by Vhlfi _.

We define another local equivalence map M R : vh[_, _ Vhlcl,, by:

Isomorphism 4 Given u E vhIfi, and a face F of Ofli, define fz = MFu by the 'values of _ at the
following sets of points:

i) Same as step i) of L_omorphism 3.

ii) Same as step ii) of Isomorphism. 3.

iii) Let P be a vertex of a triangle in Talon, that belongs to OF, and let Tj,

j = 1,... ,N_, be the triangles of Th[F that have P as a vertex. Then

IT l
fi(P):=_ U N$Tj]k=l ] j=l

iv) Let P be a vertex of a triangle in Th[on_ that does not belong to OF, and let T_,

j = 1,..., Np, be the triangles of ThIF that have P as a vertex. Then

fi(P) := _ u(Ci).
I

It is easy to check that Lemma 4 holds, if we replace vhl21f L by _,h[_, and let the faces play the

role previously played by the edges.

Let v E V h and let Ci_ be the barycenter of the face Fq common to _i and _j.
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Definition 5 The interpolation operator I H : V h ---* V H, is given by:

1

:= f ,j 1 vln,(x) dx,vln,( ) dx = IF,j--71

where [Fijl is the a_a of the face Fij.

Using the same ideas as in two dimensions, we can prove lemmas analogous to Lemmas 5-8.

The prolongation operator I h : V H --_ V h, is defined as in the two dimensional case. In a first

step, we define (IhuH)(P) :----UH(C_j) for all barycenters P of triangles in ThlF_j. Finally, we

perform a Pl-nonconforming harmonic or approximate harmonic extension.

We describe the three dimensional version of Extension 1. This is a generalization of the

partition of unity introduced by Dryja, Smith, and Widlund [14]. Let Cj, j = 1,..., 4, be the

barycenters of the faces Fj of 0ft_, and let Vj be the vertex of gti that is opposite to Cj. Let C the

centroid of 12i, i.e. the intersection of the line segments connecting the Vj to the Cj. Let Ejk,

k = 1, 2, 3, be the edges of OF a.

Extension 3 The const_tction of an approximate harmonic extension/huH is defined by the

following steps (see Figure 5.):

i) Let
1 4

a(c) := ',E-,(cj).
a-_l

ii) For a point Q that belongs to a line segment connecting C to C a, define fi(Q) by linear

interpolation between the values ft(C) and ug(Ca), i.e. by

fi(Q) := )_(Q)_(C) + (1 - A(Q))u_(Ca).

Here )_(Q) =distance(Q, Cj)/ distance(C, Ca).

iii) For a point S that belongs to any of the three triangles defined by the previous Q, and

the edges Eak, k = 1,..., 3, let
:=

iv) Finally, let IhuH = Ih_, where Ih is the interpolation operator into the space V h that

preserves the values of a function at the baryeenter of the faces of elements in T h.

We can also construct an approximate harmonic extension similar to that of Extension 2. This

gives a better approximate harmonic extension near the edges.

The prolongation operator I_r in three dimensions has the same stability properties as in the two

dimensional case, i.e. Lemma 9 still holds.

561



The ideaof the proof is the following. Consider the case where UH(_i) is given by UH(Pil ) = 1

and UH(Pi2) = UH(Pi3) = 0. This gives the partition of the unity introduced by Dryja, Smith, and

Widlund [4]. The energy semi norm of UH is of order H.

Let Oih1 = IhuH(f_i). We note that [VS_ 1 (x)t is bounded by C/r, where r is the distance to the

nearest edge of gh. The contribution to the energy semi norm from the union of the elements with

at least one vertex on the edge of the substructure can be bounded by CH, since the extension is

given by a convex combination of the boundary values. To estimate the contribution to the energy

from the rest of the substructure, we introduce cylindrical coordinates using the appropriate

substructure edge as the z-axis. Integrating [V0_l(x)] 2 over this region, we find that it is bounded

by C (1 + log(H/h)) H.

To prove Lemma 9 for a general UH, we use the same ideas as for two dimensions. Similarly, we

can extend the results to nontriangular substructures and to the Neumann-Neumann case.

............
Figure5.

MAIN RESULT

In this section, we consider the Schwarz method introduced in the previous sections and prove

the following result.

Theorem 3

satisfies:

The operator P of the additive Sehwarz algorithm,, defined by the spaee._ Voh and V_h,

f .a(P)__(l+log())(1+_-).
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Here a(P) is the condition number of P. Therefore, if we use a generous overlapping, then

_(P) _ 1+ log(H).

Proof. The proof of thistheorem isessentiallythe same as in the case of a conforming space; see

Dryja and Widlund [12].

As we have seen before, the upper bound is very easy to obtain. The lower bound is obtained by

using Lemma 2. We partition the finite element function u E Vh as follows. We first choose

Uo = IhIHu or INNU, i.e. apply a face based or Neumann-Neumann interpolation operator. Let

w = u - Uo. The other terms in the representation of u are defined by ui = Ih(Oiw), i = 1,..., N.

Here Ih is the linear interpolation operator into the space V h that preserves the values at the

midpoints of the edges of the elements and {0i} is a partition of unity with 0i G C_(fl_) and

E O_(x) = 1.

For a relatively generous overlap of the subdomains, these functions can be chosen so that V0i is

bounded by C/H. By using the linearity of Ih, we can show that we have a correct partition of u.

In order to estimate the semi norm of ui, we work on one element K at a time. We obtain

2
lUiIH_,h(K) ___ 2lt_wl_,.(K) + 2llh((O_ t_i)w) 2

Here 8i is the average value of Oi over K. It is easy to see, by using the inverse inequality (8), that

lib((0,- hCK) lib((0, -

We can now use the fact that on K, 0i differs from its average by at most C h/H. After

summing over all elements of _, we arrive at the inequality

We sum over all i and use that each point in ft is covered only a fixed number of times and

obtain a uniform bound on C 2. We conclude the proof by estimating the two terms of

+ H-2 II ll  (n)

by lu[_z_._(n). The bounds follow by using the stability results of Theorem 1 or 2.

For the case of small overlap, the proof is similar to that of the case of piecewise linear

conforming space considered in Dryja and Widlund [12]. 13
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